Measurement and DAGs

Session 4

PMAP 8521: Program evaluation Andrew Young School of Policy Studies

Plan for today

Abstraction, stretching, and validity

Causal models

Paths, doors, and adjustment

Abstraction, stretching, and validity

Indicators

Inputs, activities, and outputs

Generally directly measurable

of citations mailed, % increase in grades, etc.

Outcomes

Harder to measure directly

Loftier and more abstract

Commitment to school, reduced risk factors How do you measure abstract outcomes?

Move up the ladder of abstraction.

Conceptual stretching

Ladder of abstraction for witches

Connection to theory

Outcomes and programs

Outcome variable

Thing you're measuring

Outcome change

 Δ in thing you're measuring over time

Program effect

 Δ in thing you're measuring over time because of the program

Outcomes and programs

Before program

During program

After program

Connecting measurment to programs

Measurable definition of program effect

Ideal measurement

Feasible measurement

Connection to real world

Causal models

Types of data

Experimental

Observational

You have control over which units get treatment You don't have control over which units get treatment

Which kind lets you prove causation?

Causation with observational data

Can you prove causation with observational data?

Why is it so controversial to use observational data?

Wow: this comment from fresh page proofs.

Guess all of us researching causal inference in observational data need to find new jobs?

normal person: this rain is making us wet

me, RCT genius: whoa there! First, take twenty walks and randomly apply the rain treatment

Laura Hatfield @laura_tastic · Jan 16 Wow: this comment from fresh page proofs.

Guess all of us researching causal inference in observational data need to find new jobs?

licare

ical

ir

Commented [DT1]: Causal language (including use of terms such as effect, efficacy, and predictor) should be used only for randomized clinical trials. For all other study designs, methods and results should be described in terms of association or, if appropriate tests were used, correlation, and should avoid cause-and-effect wording. We have

The causal revolution

AND DANA MACKENZIE THE BOOKOF WHY

JUDEA PEARL

THE NEW SCIENCE OF CAUSE AND EFFECT

Causal diagrams

Directed acyclic graphs (DAGs)

Directed: Each node has an arrow that points to another node

Acyclic: You can't cycle back to a node (and arrows only have one direction)

Graph: It's... um... a graph

Causal diagrams

Directed acyclic graphs (DAGs)

Graphical model of the process that generates the data

Maps your philosophical model

Fancy math ("do-calculus") tells you what to control for to isolate and identify causation

Acyclicalness

What if there's something that really is cyclical?

 $Wealth \rightarrow Power \rightarrow Wealth$

This isn't acyclic! Wealth \leftrightarrow Power

Split the node into different time periods

Wealth_{t - 1} \rightarrow Power_t \rightarrow Wealth_t

How to draw a DAG

What is the causal effect of an additional year of education on earnings?

Step 1: List variables

Step 2: Simplify

Step 3: Connect arrows

Step 4: Use logic and math to determine which nodes and arrows to measure

1. List variables

Education (treatment) → Earnings (outcome)

	Location	Ability	D	emographics	
	Socioeonomic status			Year of birth	
Compulsory schooling laws Job connections					

2. Simplify

Education (treatment) → Earnings (outcome)

Compulsory schooling lawsJob connectionsBackground

Education causes earnings

Background, year of birth, location, job connections, and school requirements all cause education

Location and background are probably related, but neither causes the other. Something unobservable (U1) does that.

Let the computer do this!

dagitty.net

ggdag package in R

Paths, doors, and adjustment

Causal identification

All these nodes are related; there's correlation between them all

We care about Edu → Earn, but what do we do about all the other nodes?

Causal identification

A causal effect is *identified* if the association between treatment and outcome is propertly stripped and isolated

Paths and associations

Arrows in a DAG transmit associations

You can redirect and control those paths by "adjusting" or "conditioning"

Three types of associations

Confounding

d-connection

X and Y are "d-connected" because associations can pass through Z

The relationship between X and Y is not identified / isolated

Effect of money on elections

What are the paths between **money** and **win margin**?

Money \rightarrow Margin

Money \leftarrow Quality \rightarrow Margin

Quality is a *backdoor*

Closing doors

Close the backdoor by adjusting for Z

Closing doors

Find the part of campaign money that is explained by quality, remove it. This is the residual part of money.

Find the part of win margin that is explained by quality, remove it. This is the residual part of win margin.

Find the relationship between the residual part of money and residual part of win margin. This is the causal effect.

Closing doors

Compare candidates as if they had the same quality

Remove differences that are predicted by quality

Hold quality constant

How to adjust

Include term in regression

$egin{aligned} ext{Win margin} = &eta_0 + eta_1 ext{Campaign money} + \ &eta_2 ext{Candidate quality} + arepsilon \end{aligned}$

d-separation

If we control for Z, X and Y are now "d-separated" and the association is isolated!

Closing backdoors

Block all backdoor paths to identify the main pathway you care about

Education \rightarrow Earnings

Education \rightarrow Job connections \rightarrow Earnings

Education \leftarrow **Background** \rightarrow **Earnings**

 $\begin{array}{l} \textbf{Education} \leftarrow \textbf{Background} \leftarrow \textbf{U1} \rightarrow \textbf{Location} \rightarrow \\ \textbf{Earnings} \end{array}$

Education \leftarrow **Location** \rightarrow **Earnings**

 $\begin{array}{l} \textbf{Education} \leftarrow \textbf{Location} \leftarrow \textbf{U1} \rightarrow \textbf{Background} \rightarrow \\ \textbf{Earnings} \end{array}$

Education \leftarrow Year \rightarrow Earnings

All paths

Adjust for Location, Background and Year to isolate the Education → Earnings causal effect

Let the computer do this!

dagitty.net

The ggdag and dagitty packages in R

How do you know if this is right?

You can test the implications of the model to see if they're right in your data

 $X \perp Y \mid Z$

X is independent of Y, given Z

Testable implications

The model implies the following conditional independences:

- Education ⊥ Earnings I Background, Job connections, Location, Year
- Required schooling ⊥ Job connections I Education
- Required schooling \perp Year
- Required schooling ⊥ Earnings I Background, Job connections, Location, Year
- Required schooling ⊥ Earnings I Background, Education, Location, Year
- Required schooling ⊥ Background
- Required schooling ⊥ Location
- Job connections ⊥ Year I Education
- Job connections ⊥ Background I Education
- Job connections ⊥ Location I Education
- Year ⊥ Background
- Year ⊥ Location

Causation

Causation

Causation and overcontrolling

Should you control for job connections?

Colliders

Programming and social skills

Do programming skills reduce social skills?

You go to a tech company and conduct a survey. You find a negative relationship! Is it real?

Programming and social skills

Do programming skills reduce social skills?

No! **Hired by a tech company** is a collider and we controlled for it.

This inadvertently connected the two.

Colliders can create fake causal effects

Colliders can hide real causal effects

Chicago Bulls 2009-10

Height is unrelated to basketball skill... among NBA players

Colliders and selection bias

Three types of associations

